Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 262
1.
Front Oncol ; 14: 1392844, 2024.
Article En | MEDLINE | ID: mdl-38741781

Objective: To systematically understand the research frontiers, hotspots and development trends of exercise therapy in the intervention of tumor-related sleep-wake disorders, and to provide scientific basis for follow-up research. Methods: Downloaded the original research papers on February 26, 2024, from the Web of Science core collection database, on tumor-associated sleep-wake disorders. The data that met the inclusion criteria were imported into the Bibliometric Analysis Platform (http://biblimetric.com), CiteSpace 6.3.R1 and VOSviwer1.6.20 software for visual analysis, and imported into Excel2021. Scientometric analysis was performed with Oringin2021 and PyCharm Community Edition 2022.1.3. Results: A total of 512 original research papers on tumor-related sleep-wake disorders were obtained. The most influential countries in the subject area are the United States, Spain and German, the institutions are the University of California System, Sun Yat Sen University and Northwestern University, et al., the authors are Berger AM, Aaronson NK, Bower JE, et al., and the journals are Cancer, Brit J Cancer and Cancer Nurs. The co-cited references suggest that the current research frontier in the field mainly involves the level, place and program of exercise therapy, including the relationship between physical activity, sedentary behavior and cancer prevention and control. The results of co-occurrence keyword network analysis showed that quality of life, physical activity, breast cancer, exercise, fatigue, and survivors may be the research hotspots in this field, with breast cancer, health, aerobic exercise, adults, and chemotherapy being the most popular. Conclusions: The number of papers published and the research enthusiasm in this field show a steady upward trend. However, there is a lack of influential institutions and scholars, and there is relatively little research collaboration across countries/regions/institutions. The scientific research influence of institutions and scholars in most European and American countries/regions is significantly ahead of that of institutions and scholars in Asian and African countries/regions. But Sun Yat Sen University in China is a relatively active and influential scientific research institution in recent years, which is worthy of attention. In addition, the research frontier of this discipline is the level, place and program of exercise therapy auxiliary intervention, and the research hotspots involve breast cancer, health, aerobic exercise, adults, chemotherapy, et al. Their clinical efficacy needs to be further demonstrated in multi-center, large-sample and high-quality prospective studies.

2.
Nat Struct Mol Biol ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658622

The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.

3.
Article En | MEDLINE | ID: mdl-38685756

PURPOSE: The aim of this study was to investigate the microcirculatory characteristics of the dome-shaped macula (DSM), its complications in highly myopic eyes and to explore the factors associated with a DSM. METHODS: This cross-sectional case-control study included a total of 98 subjects (98 eyes): 49 eyes with DSM and 49 eyes without DSM. The axial length (AL) of the myopic eyes was matched 1:1 to eliminate the effect of AL differences on the results. Choroidal (CT) and scleral thickness (ST) and other structural parameters were assessed by swept-source optical coherence tomography (SS-OCT). OCT angiography was used to measure microcirculatory parameters in highly myopic eyes. RESULTS: Subjects with DSM had thinner subfoveal choroidal thickness (46.01 ± 13.25 vs. 81.62 ± 48.26 µm; p < 0.001), thicker subfoveal scleral thickness (SFST; 331.93 ± 79.87 vs. 238.74 ± 70.96 µm; p < 0.001) and thinner foveal CT (66.86 ± 24.65 vs. 107.85 ± 52.65 µm; p < 0.001) compared to subjects without DSM. The foveal choroidal perfusion area (0.72 ± 0.04 vs. 0.76 ± 0.04 mm2; p < 0.001) and foveal choroidal vascularity index (0.15 ± 0.04 vs. 0.33 ± 0.14; p < 0.001) were significantly lower in eyes with DSM. Retinoschisis (81.6% vs. 38.8%; p < 0.001) was more common in eyes with DSM. Eyes with horizontal DSM had worse best-corrected logMAR visual acuity than eyes with round DSM (0.34 ± 0.22 vs. 0.23 ± 0.22; p = 0.03). DSM height (98.95 ± 65.17 vs. 104.63 ± 44.62 µm; p = 0.05) was lower in the horizontal DSM. SFST (OR = 1.06, p = 0.04) and foveal choroidal vascularity index (OR = 0.711, p = 0.02) were significantly associated with DSM. DSM width (p < 0.001), foveal choroidal perfusion area (p = 0.01), foveal choriocapillaris perfusion area (p = 0.02) and parafoveal choroidal vascularity index (p = 0.03) were the most significantly associated factors with DSM height. CONCLUSIONS: The microcirculatory characteristics of eyes with DSM differed from those without DSM. Microcirculatory abnormalities were significantly associated with a DSM. The height of the DSM was associated with decreased blood perfusion.

4.
Ophthalmol Ther ; 13(5): 1125-1144, 2024 May.
Article En | MEDLINE | ID: mdl-38416330

INTRODUCTION: Inaccurate, untimely diagnoses of fundus diseases leads to vision-threatening complications and even blindness. We built a deep learning platform (DLP) for automatic detection of 30 fundus diseases using ultra-widefield fluorescein angiography (UWFFA) with deep experts aggregation. METHODS: This retrospective and cross-sectional database study included a total of 61,609 UWFFA images dating from 2016 to 2021, involving more than 3364 subjects in multiple centers across China. All subjects were divided into 30 different groups. The state-of-the-art convolutional neural network architecture, ConvNeXt, was chosen as the backbone to train and test the receiver operating characteristic curve (ROC) of the proposed system on test data and external test date. We compared the classification performance of the proposed system with that of ophthalmologists, including two retinal specialists. RESULTS: We built a DLP to analyze UWFFA, which can detect up to 30 fundus diseases, with a frequency-weighted average area under the receiver operating characteristic curve (AUC) of 0.940 in the primary test dataset and 0.954 in the external multi-hospital test dataset. The tool shows comparable accuracy with retina specialists in diagnosis and evaluation. CONCLUSIONS: This is the first study on a large-scale UWFFA dataset for multi-retina disease classification. We believe that our UWFFA DLP advances the diagnosis by artificial intelligence (AI) in various retinal diseases and would contribute to labor-saving and precision medicine especially in remote areas.

5.
Bioact Mater ; 35: 17-30, 2024 May.
Article En | MEDLINE | ID: mdl-38304915

Diabetic wounds has a gradually increasing incidence and morbidity. Excessive inflammation due to immune imbalance leads to delayed wound healing. Here, we reveal the interconnection between activation of the NLRP3 inflammatory pathway in endotheliocyte and polarization of macrophages via the cGAS-STING pathway in the oxidative microenvironment. To enhance the immune-regulation based on repairing mitochondrial oxidative damage, a zeolitic imidazolate framework-8 coated with cerium dioxide that carries Rhoassociated protein kinase inhibition Y-27632 (CeO2-Y@ZIF-8) is developed. It is encapsulated in a photocross-linkable hydrogel (GelMA) with cationic quaternary ammonium salt groups modified to endow the antibacterial properties (CeO2-Y@ZIF-8@Gel). CeO2 with superoxide dismutase and catalase activities can remove excess reactive oxygen species to limit mitochondrial damage and Y-27632 can repair damaged mitochondrial DNA, thus improving the proliferation of endotheliocyte. After endotheliocyte uptakes CeO2-Y@ZIF-8 NPs to degrade peroxides into water and oxygen in cells and mitochondria, NLRP3 inflammatory pathway is inhibited and the leakage of oxidatively damaged mitochondrial DNA (Ox-mtDNA, a damage-associated molecular pattern) through mPTP decreases. Futhermore, as the cGAS-STING pathway activated by Ox-mtDNA down-regulated, the M2 phenotype polarization and anti-inflammatory factors increase. Collectively, CeO2-Y@ZIF-8@Gel, through remodulating the crosstalk between macrophage reprogramming and angiogenesis to alleviate inflammation in the microenvironment and accelerates wound healing.

6.
Insect Sci ; 31(2): 646-650, 2024 Apr.
Article En | MEDLINE | ID: mdl-37461250

We have established a novel CRISPR-dCas9-METTL4 epigenome editing tool that can methylate target regions to achieve site-specific DNA 6mA methylation in both hypermethylated and hypomethylated genes. Targeted methylation on genes by dCas9-METTL4 results in misexpression, allowing for the functional investigation of target genes of interest in silkworm.


Adenine , Bombyx , Animals , Bombyx/genetics , DNA Methylation , DNA/genetics , CRISPR-Cas Systems
7.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 357-365, 2024 Mar.
Article En | MEDLINE | ID: mdl-37899710

This experiment was conducted to investigate the effects of a high-fibre diet on growth performance, nutrients digestibility, intestinal health, and intestinal microbiota composition of growing pigs. Twelve healthy "Duroc × Landrace × Yorkshire" castrates (49 ± 1.35 kg) were randomly divided into two groups with six replicates and one pig per replicate. The two diet treatments were fed the basal diet (CON) based on corn and soybean meal and high fibre diet (HF) respectively. The nutritional levels of the two treatments were the same. The experiment lasted 28 days. The results showed that the addition of 16% wheat bran fibre to the diet of growing pigs did not affect growth performance (p > 0.05). Compared with the CON, contents of isobutyric and butyric acid, GSH-PX and T-AOC in serum were increased in the HF. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05), the contents of GSH-PX and T-AOC in serum. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05). Compared with the CON, the Shannon, and Chao1 indexes of the HF were increased (p < 0.05). At the phylum level, the abundance of g_Lactobacillus increased in the HF (p < 0.05). Correlation analysis showed that a total of 18 microbial genera were correlated with antioxidant capacity and volatile fatty acid levels (p < 0.05). In summary, this study showed that adding 16% wheat bran to the diet of growing pigs had no effect on growth performance but helped to improve the richness and stability of intestinal microbiota, promote posterior intestinal fermentation and increase serum antioxidant capacity.


Antioxidants , Microbiota , Swine , Animals , Antioxidants/pharmacology , Digestion/physiology , Diet/veterinary , Dietary Fiber/analysis , Acetates/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
8.
Front Microbiol ; 14: 1282767, 2023.
Article En | MEDLINE | ID: mdl-38075859

This study was conducted to compare the effects of rumen-protected (RP-Leu) and unprotected L-leucine (RU-Leu) on the fermentation parameters, bacterial composition, and amino acid metabolism in vitro rumen batch incubation. The 5.00 g RP-Leu or RU-Leu products were incubated in situ in the rumen of four beef cattle (Bos taurus) and removed after 0, 2, 4, 6, 12, 16, and 24 h to determine the rumen protection rate. In in vitro incubation, both RP-Leu and RU-Leu were supplemented 1.5 mmol/bottle (L-leucine HCl), and incubated after 0, 2, 4, 6, 8, 12, and 16 h to measure gas production (GP), nutrient degradability, fermentation parameters, bacterial composition, and amino acids metabolism. Results from both in vitro and in situ experiments confirmed that the rumen protection rate was greater (p < 0.01) in RP-Leu than in RU-Leu, whereas the latter was slow (p < 0.05) degraded within incubation 8 h. Free leucine from RP-Leu and RU-Leu reached a peak at incubation 6 h (p < 0.01). RU-Leu supplementation increased (p < 0.05) gas production, microbial crude protein, branched-chain AAs, propionate and branched-chain VFAs concentrations, and Shannon and Sobs index in comparison to the control and RP-Leu supplementation. RU-Leu and RP-Leu supplementation decreased (p < 0.05) the relative abundance of Bacteroidota, which Firmicutes increased (p < 0.05). Correlation analysis indicated that there are 5 bacteria at the genus level that may be positively correlated with MCP and propionate (p < 0.05). Based on the result, we found that RP-Leu was more stable than RU-Leu in rumen fluid, but RU-Leu also does not exhibit rapid degradation by ruminal microbes for a short time. The RU-Leu was more beneficial in terms of regulating rumen fermentation pattern, microbial crude protein synthesis, and branched-chain VFAs production than RP-Leu in vitro rumen conditions.

9.
Sci Adv ; 9(49): eadj4656, 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38055810

Intrinsic gain is a vital figure of merit in transistors, closely related to signal amplification, operation voltage, power consumption, and circuit simplification. However, organic thin-film transistors (OTFTs) targeted at high gain have suffered from challenges such as narrow subthreshold operating voltage, low-quality interface, and uncontrollable barrier. Here, we report a van der Waals metal-barrier interlayer-semiconductor junction-based OTFT, which shows ultrahigh performance including ultrahigh gain of ~104, low saturation voltage, negligible hysteresis, and good stability. The high-quality van der Waals-contacted junctions are mainly attributed to patterning EGaIn liquid metal electrodes by low-energy microfluidic processes. The wide-bandgap semiconductor Ga2O3 as barrier interlayer is achieved by in situ surface oxidation of EGaIn electrodes, allowing for an adjustable barrier height and expected thermionic emission properties. The organic inverters with a high gain of 5130 and a simplified current stabilizer are further demonstrated, paving a way for high-gain and low-power organic electronics.

10.
Aging (Albany NY) ; 15(24): 14803-14829, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38112574

BACKGROUND: Ischemic stroke (IS) is a fearful disease that can cause a variety of immune events. Nevertheless, precise immune-related mechanisms have yet to be systematically elucidated. This study aimed to identify immune-related signatures using machine learning and to validate them with animal experiments and single cell analysis. METHODS: In this study, we screened 24 differentially expressed genes (DEGs) while identifying immune-related signatures that may play a key role in IS development through a comprehensive strategy between least absolute shrinkage and selection operation (LASSO) regression, support vector machine (SVM) and immune-related genes. In addition, we explored immune infiltration using the CIBERSORT algorithm. Finally, we performed validation in mouse brain tissue and single cell analysis. RESULTS: We identified 24 DEGs for follow-up analysis. ID3 and SLC22A4 were finally identified as the better immune-related signatures through a comprehensive strategy among DEGs, LASSO, SVM and immune-related genes. RT-qPCR, western blot, and immunofluorescence revealed a significant decrease in ID3 and a significant increase in SLC22A4 in the middle cerebral artery occlusion group. Single cell analysis revealed that ID3 was mainly concentrated in endothelial_2 cells and SLC22A4 in astrocytes in the MCAO group. A CIBERSORT finds significantly altered levels of immune infiltration in IS patients. CONCLUSIONS: This study focused on immune-related signatures after stroke and ID3 and SLC22A4 may be new therapeutic targets to promote functional recovery after stroke. Furthermore, the association of ID3 and SLC22A4 with immune cells may be a new direction for post-stroke immunotherapy.


Inhibitor of Differentiation Proteins , Ischemic Stroke , Organic Cation Transport Proteins , Stroke , Symporters , Animals , Humans , Mice , Algorithms , Astrocytes , Blotting, Western , Inhibitor of Differentiation Proteins/immunology , Inhibitor of Differentiation Proteins/metabolism , Ischemic Stroke/genetics , Neoplasm Proteins , Organic Cation Transport Proteins/immunology , Organic Cation Transport Proteins/metabolism , Stroke/immunology , Stroke/metabolism , Symporters/immunology , Symporters/metabolism
11.
J Chem Phys ; 159(11)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37721329

The formation of angulon, stemming from the rotor (molecule or impurity), rotating in the quantum many-body field, adds a new member to the quasi-particles' family and has aroused intense interest in multiple research fields. However, the analysis of the coupling strength between the rotor and its hosting environment remains a challenging task, both in theory and experiment. Here, we develop the all-coupling theory of the angulon by introducing a unitary transformation, where the renormalization of the rotational constants for different molecules in the helium nanodroplets is reproduced, getting excellent agreement with the experimental data collected during the past decades. Moreover, the strength of molecule-helium coupling and the effective radius of the solvation shell co-rotating along with the molecular rotor could be estimated qualitatively. This model not only provides significant enlightenment for analyzing the rotational spectroscopy of molecules in the phononic environment, but also provides a new method to study the transfer of the phonon angular momentum in the angulon frame.

13.
Eur J Med Res ; 28(1): 284, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37587506

BACKGROUND: Stroke is a heavy burden in modern society, and carotid artery disease is a major cause. The role of the extracellular matrix (ECM) in the development and progression of carotid artery disease has become a popular research focus. However, there is no published bibliometric analysis to derive the main publication features and trends in this scientific area. We aim to conduct a bibliometric analysis to reveal current status of ECM in carotid artery disease and to predict future hot spots. METHODS: We searched and downloaded articles from the Web of Science Core Collection with "Carotid" and "Extracellular Matrix" as subject words from 1990 to 2021. The complete bibliographic data were analyzed by Bibliometrics, BICOMB, gCLUTO and CiteSpace softwares. RESULTS: Since 1990, the United States has been the leader in the number of publications in the field of ECM in carotid artery disease, followed by China, Japan and Germany. Among institutions, Institut National De La Sante Et De La Recherche Medicale Inserm, University of Washington Seattle and Harvard University are in the top 3. "Arteriosclerosis Thrombosis and Vascular Biology" is the most popular journal and "Circulation" is the most cited journal. "Clowes AW", "Hedin Ulf" and "Nilsson Jan" are the top three authors of published articles. Finally, we investigated the frontiers through the strongest citation bursts, conducted keyword biclustering analysis, and discovered five clusters of research hotspots. Our research provided a comprehensive analysis of the fundamental data, knowledge organization, and dynamic evolution of research about ECM in carotid artery disease. CONCLUSIONS: The field of ECM in carotid artery disease has received increasing attention. We summarized the history of the field and predicted five future hotspots through bibliometric analysis. This study provided a reference for researchers in this fields, and the methodology can be extended to other fields.


Carotid Artery Diseases , Dermatitis , Stroke , Humans , Extracellular Matrix , China
14.
Commun Biol ; 6(1): 884, 2023 08 29.
Article En | MEDLINE | ID: mdl-37644183

Myopia is a major public health issue. However, interventional modalities for nonpathologic myopia are limited due to its complicated pathogenesis and the lack of precise targets. Here, we show that in guinea pig form-deprived myopia (FDM) and lens-induced myopia (LIM) models, the early initiation, phenotypic correlation, and stable maintenance of cochlin protein upregulation at the interface between retinal photoreceptors and retinal pigment epithelium (RPE) is identified by a proteomic analysis of ocular posterior pole tissues. Then, a microarray analysis reveals that cochlin upregulates the expression of the secreted frizzled-related protein 1 (SFRP1) gene in human RPE cells. Moreover, SFRP-1 elevates the intracellular Ca2+ concentration and activates Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling in a simian choroidal vascular endothelial cell line, and elicits vascular endothelial cell dysfunction. Furthermore, genetic knockdown of the cochlin gene and pharmacological blockade of SFRP1 abrogates the reduced choroidal blood perfusion and prevents myopia progression in the FDM model. Collectively, this study identifies a novel signaling axis that may involve cochlin in the retina, SFRP1 in the RPE, and CaMKII in choroidal vascular endothelial cells and contribute to the pathogenesis of nonpathologic myopia, implicating the potential of cochlin and SFRP1 as myopia interventional targets.


Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Myopia , Humans , Animals , Guinea Pigs , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Endothelial Cells , Proteomics , Myopia/genetics , Myopia/prevention & control , Retinal Pigment Epithelium , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins
15.
Front Med (Lausanne) ; 10: 1146291, 2023.
Article En | MEDLINE | ID: mdl-37425324

Background: High myopia (HM) may elicit irreversible pathological changes in the fundus and severely impair visual quality, thereby becoming a major public health issue in China. However, the influencing factors associated with HM remain unknown in Chinese college students, whose visual quality is crucial to country development. Methods: This is a cross-sectional observational study. Two thousand three hundred and fifteen undergraduate and graduate students were initially recruited from various majors in 3 universities in Tianjin, China. Under the principle of voluntary participation and informed consent, simple random sampling was conducted in the recruited subjects while maintaining balanced number of subjects from each major. After screening with inclusion and exclusion criteria, 96 undergraduate and graduate students (186 eyes) were finally included and divided into non-HM and HM groups. The eyes of subjects were examined by optical coherence tomography angiography (OCTA) for vessel density and structure thickness at the macula and optic disc, and the subjects were surveyed by an itemized questionnaire on lifestyles and study habits. Results: The OCTA and questionnaire results revealed 10 factors, including hemodynamic and anatomic parameters and lifestyle metrics, with statistical significance between the non-HM and HM groups. Receiver operating characteristic curve analysis showed that vessel density of the inner retina at the macula, vessel density of the radial peripapillary capillary at the optic disc, smartphone usage time, continuous near work time, and sleeping after midnight had superior values of area under the curve (AUC > 0.700). Therefore, these 5 factors were selected for univariant and multivariant logistic regression analyses. A prediction model comprising the 5 influencing factors had an AUC of 0.940 and 95% CI of 0.908-0.972. Conclusion: This study for the first time identified the vessel density of the inner retina at the macula, the vessel density of the radial peripapillary capillary at the optic disc, smartphone usage time, continuous near work time, and sleeping after midnight as influencing factors associated with HM in Chinese college students. A prediction model comprising the 5 influencing factors was proposed for calculating likelihood of a Chinese college student developing HM, based on which lifestyle improvement and medical intervention might be recommended.

16.
Int J Nanomedicine ; 18: 3951-3972, 2023.
Article En | MEDLINE | ID: mdl-37489140

Introduction: Drug-resistant bacterial infections and biofilm formation play important roles in the pathogenesis of diabetic refractory wounds. Tea tree oil (TTO) exhibits antimicrobial, antimycotic, and antiviral activities, especially against common clinically resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), making it a potential natural antimicrobial for the treatment of acute and chronic wounds. However, TTO is insoluble in water, volatile, light-sensitive, and cytotoxic. While previous macroscopic studies have focused on sterilization with TTO, none have sought to alter its structure or combine it with other materials to achieve sustained release. Methods: Electrospun TTO nanoliposomes (TTO-NLs), arranged linearly via high-pressure homogenization, could stabilize the structure and performance of TTO to achieve slow drug release. Herein, we established a composite nano-sustained release system, TTO-NL/polyvinyl alcohol/chitosan (TTO-NL@PCS), using high-voltage electrospinning. Results: Compared with the control, TTO-NL@PCS exhibits higher concentrations of the active TTO drug components, terpinen-4-ol and 1,8-cineole. Owing to its increased stability and slow release, early exposure to TTO-NL@PCS increases the abundance of reactive oxygen species in vitro, ultimately causing the biofilm to disperse and completely killing MRSA without inducing cytotoxic effects to the host. Moreover, in BKS-Leprem2Cd479/Gpt mice with a whole-layer skin infection, untargeted metabolomics analysis of wound exudates reveals upregulated PGF2α/FP receptor signaling and interleukin (IL)-1ß and IL-6 expression following application of the composite system. The composite also ameliorates the chemotaxis disorder in early treatment and attenuates the wound inflammatory response during the repair stage of diabetic inflammatory wounds, and upregulates VEGF expression in the wound bed. Conclusion: TTO-NL@PCS demonstrates the remarkable potential for accelerating diabetic and MRSA-infected wound healing.


Diabetes Mellitus , Methicillin-Resistant Staphylococcus aureus , Animals , Mice , Delayed-Action Preparations , Ulcer , Biofilms
17.
Phys Med Biol ; 68(16)2023 Jul 31.
Article En | MEDLINE | ID: mdl-37437581

Objective.Deep learning has demonstrated its versatility in the medical field, particularly in medical image segmentation, image classification, and other forms of automated diagnostics. The clinical diagnosis of thyroid nodules requires radiologists to locate nodules, diagnose conditions based on nodule boundaries, textures and their experience. This task is labor-intensive and tiring; therefore, an automated system for accurate thyroid nodule segmentation is essential. In this study, a model named DPAM-PSPNet was proposed, which automatically segments nodules in thyroid ultrasound images and enables to segment malignant nodules precisely.Approach.In this paper, accurate segmentation of nodule edges is achieved by introducing the dual path attention mechanism (DPAM) in PSPNet. In one channel, it captures global information with a lightweight cross-channel interaction mechanism. In other channel, it focus on nodal margins and surrounding information through the residual bridge network. We also updated the integrated loss function to accommodate the DPAM-PSPNet.Main results.The DPAM-PSPNet was tested against the classical segmentation model. Ablation experiments were designed for the two-path attention mechanism and the new loss function, and generalization experiments were designed on the public dataset. Our experimental results demonstrate that DPAM-PSPNet outperforms other existing methods in various evaluation metrics. In the model comparison experiments, it achieved performance with an mIOU of 0.8675, mPA of 0.9357, mPrecision of 0.9202, and Dice coefficient of 0.9213.Significance.The DPAM-PSPNet model can segment thyroid nodules in ultrasound images with little training data and generate accurate boundary regions for these nodules.

18.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37314321

This study aimed to investigate the impact of compound organic acid (COA) and chlortetracycline (CTC) on serum biochemical parameters, intestinal health, and growth performance of weaned piglets. Twenty-four piglets (24 d of age) were randomly allocated into three treatments with eight replicate pens (one piglet per pen). Feed the basal diet or a diet containing 3,000 mg/kg COA or 75 mg/kg CTC, respectively. Results showed that both COA and CTC significantly increased average daily gain and reduced diarrhea rates (P < 0.05). They also upregulated serum total antioxidant capacity and downregulated serum interleukin (IL-10) levels (P < 0.05), increased crude protein digestibility and propionic acid concentration in the colon, and decreased spermidine and putrescine contents (P < 0.05). Intestinal microbiota analysis revealed that both COA and CTC increased the Shannon and Chao1 index and decreased the relative abundance of Blautia and Roseburia, but increased the relative abundance of Clostridium-sensu-stricto-1. Correlation analysis indicated that Clostridium-sensu-stricto-1 may be closely related to inflammation levels and microbial metabolites in piglets. Based on the results, COA may be a potential substitute for CTC to reduce antibiotic use and biogenic amine emission while improving piglet growth and intestinal health.


Weaned piglets face challenges due to their underdeveloped digestive system, resulting in high gastrointestinal tract pH and insufficient enzyme secretion. To address this issue, we found supplementing piglet diets with 3,000 mg/kg of compound organic acid positively impacted the immune and antioxidant levels of piglets, promoted their intestinal health, improved nutrient digestibility, and enhanced their overall growth performance. These benefits were attributed to the regulation of intestinal microbiota by the compound organic acid. By improving piglet health and growth, this research offers a potential solution to the challenges of piglet weaning stress.


Antioxidants , Gastrointestinal Microbiome , Animals , Swine , Antioxidants/metabolism , Dietary Supplements/analysis , Intestines , Diet/veterinary
19.
Diagnostics (Basel) ; 13(11)2023 May 26.
Article En | MEDLINE | ID: mdl-37296709

Diabetic macular edema (DME) is a significant complication of diabetes that impacts the eye and is a primary contributor to vision loss in individuals with diabetes. Early control of the related risk factors is crucial to reduce the incidence of DME. Artificial intelligence (AI) clinical decision-making tools can construct disease prediction models to aid in the clinical screening of the high-risk population for early disease intervention. However, conventional machine learning and data mining techniques have limitations in predicting diseases when dealing with missing feature values. To solve this problem, a knowledge graph displays the connection relationships of multi-source and multi-domain data in the form of a semantic network to enable cross-domain modeling and queries. This approach can facilitate the personalized prediction of diseases using any number of known feature data. In this study, we proposed an improved correlation enhancement algorithm based on knowledge graph reasoning to comprehensively evaluate the factors that influence DME to achieve disease prediction. We constructed a knowledge graph based on Neo4j by preprocessing the collected clinical data and analyzing the statistical rules. Based on reasoning using the statistical rules of the knowledge graph, we used the correlation enhancement coefficient and generalized closeness degree method to enhance the model. Meanwhile, we analyzed and verified these models' results using link prediction evaluation indicators. The disease prediction model proposed in this study achieved a precision rate of 86.21%, which is more accurate and efficient in predicting DME. Furthermore, the clinical decision support system developed using this model can facilitate personalized disease risk prediction, making it convenient for the clinical screening of a high-risk population and early disease intervention.

20.
Front Vet Sci ; 10: 1185191, 2023.
Article En | MEDLINE | ID: mdl-37377951

The purpose of this study is to reveal the effects of different particle sizes of rice straw on the rumen protozoa count, nutrient disappearance rate, rumen fermentation, and microbial community in a rumen simulation technique (RUSITEC) system. In this experiment, a single-factor random trial design was adopted. According to the different particle sizes of rice straw, there were three treatments with three replies in each treatment. Three kinds of goat total mixed ration (TMR), with the same nutrients were used to carry out a 10 days in vitro fermentation experiment using the rumen simulation system developed by Hunan Agricultural University, including 6 days the pretrial period and 4 days formal period. This study found that the organic matter disappearance rate, concentrations of total volatile fatty acids (VFAs), acetate, propionate, and iso-butyrate were greatest in the 4 mm group (p < 0.05). There were no significant differences in the alpha diversity, among the three groups (p > 0.05). The relative abundance of Treponema and Ruminococcus of the 2 mm group increased; the relative abundance of Butyrivibrio and Prevotella in samples increased in the 4 mm group. In addition, the results of correlation analysis showed that Prevotella and Ruminococcus was positively correlated with butyrate, ammonia-N, dOM and d ADF (p < 0.05) and negatively correlated with valerate (p < 0.05); Oscillospira was positively correlated with valerate (p < 0.01) and negatively correlated with propionate, butyrate, ammonia-N, dOM and dADF (p < 0.05). The present results imply that compared to the other groups, rice straw particle size of 4 mm may improve the disappearance rate of nutrients and promote the production of volatile fatty acids by regulating ruminal microorganisms.

...